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The Convexity of Bernstein Polynomials over Triangles
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A necessary and sufficient condition for the convexity of the Bernstein
polynomial over the triangle is presented. In particular, it follows that if the nth
Bezier net of the function is convex over the triangle, so is the nth Bernstein
polynomial.

1. INTRODUCTION

For a function f(x} defined in [0, 1], the nth Bernstein polynomial of f is
denoted by B,(f;x). It is well known that (see [1])

(1) if f(x) is convex in [0, 1], so is B,(f;x);
(2) if f(x) is convex in [0, 1], then

B,(f;x)>B,, .(f;x), n=1,2,3,.,

for x € [0, 1].

We consider the possibility of extending these results to the Bernstein
polynomials over triangles. Let us begin with some definitions and notation.

Let T, T,, T, be three vertices of a triangle 7 which is called the base
triangle. It is known that every point P of the plane in which the triangle lies
can be expressed uniquely by P=uT, 4+ vT, + wT, such that

u+v+w=1L (1)

(u, v, w) are called the barycentric coordinates of P with respect to the
triangle 7. We identify the point P with its barycentric coordinates and write
P=(u,v,w). It is clear that T, =(1,0,0), T,=(0, 1,0), and T, = (0,0, 1).
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12 CHANG AND DAVIS

Barycentric coordinates of points inside or on the boundary of 7" are charac-
terized by (1) and

u>0, v20, w > 0. )
A function f(P) defined on T can be expressed in terms of the barycentric

coordinates of P, ie., f(P)=f(u,v,w). We compute (n+ 1)(n+2)/2
functional values of

i J ok
fiaa=f (2] 12030k 0 04 k=n

The nth Bernstein polynomial of f over T is given by

B(fsP)= N fijudiiaP), 3)
i+j+k=n
where
n n! i) j k

are called the Bernstein basis polynomials.
Let Q be a convex set in the plane. A continuous function f(P) is said to
be convex in Q2 if

e B A GR )]
for all points P and Q in Q.

As we tried to extend (1) and (2) to the Bernstein polynomials over
triangles, we found that (2) can be extended while (1) cannot! For example,
S(P) is defined by the shaded triangles over T (see Fig. 1), where f(T,) =1
and f(T))=f(T;)=f(M)=0 and where M is the midpoint of 7,T;. It is
clear that f(P) is convex in T. Simple calculation shows that

Bl(f’P) = v(u + U),
and that
BZ(f’ Tl) = 05

By(f5 M) =By(f30,1,4) = \.
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FIGURE 1

Since

)

Sp—

By)(f53(T,+ M) =B,(f;1,3.1)=1> =30+
=1[By(f; Ty) + B,(f; M),

it follows that B,(f; P) is not convex!

In this paper, a simple condition which ensures the convexity of B, (f; P)
is given. To formulate our main results, some notation and terminology are
needed.

Setting F; ; , = (i/n, j/n, k/n;f; ; +), this is a point on the surface associated
with the function f(P). There are altogether (n + 1)(n + 2)/2 such points in
the space. Drawing a triangle with three points

Fi+1,j,k’ Fi,j+l.k’ Fi.j.k+1

as its vertices, where i +j+ k=n — 1, a piecewise linear function on T is
obtained and is denoted by f,(P). f,(P) is called the nth Bézier net of f(P), in
accordance with literature in Computer Aided Geometric Design [2].

The projection of f,(P) onto the triangle T produces a subdivision of 7
denoted by S, (7). S,(T) is illustrated in Fig. 2.
Our main results are the following:

FIGURE 2

640/40/1-2
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(1) if the nth Bézier net f,(P) is convex, so is the nth Bernstein
polynomial B,(f; P)

(2) if f(P)is convex in T, then we have
B (fiP)>B, (3P, n=123,.,
for PeT.

2. PRELIMINARIES

It is clear that

B,(f;1,0,0)=f(1,0,0),
Bn f;o’ 1,0)=f(0’ 150)9
B,(f;0,0,1)=f(0,0,1),

i.e., B,(f; P) interpolates to function f at the vertices of the base triangle T.
Since

J P20 for PET,

and

NP =t wy =1,

ivitk=n

it follows that B,(f’; P) is a convex linear combination of {f; ; ,}. This means
that the surface over T represented by B, (f; P) is contained in the convex
hull of the set of points {F,; ; .}

There is a recursive algorithm for the evaluation of B,(f; P} (see [2]).
Define

FlP)=fije  G+j+k=n) ()
and
:/ k(P)_uff-H}, (P)+vf:;+1 k(P)+ ”{f‘lj k+l(P)! (6)

where =1, 2,..., n; i +j + k + | = n. Introducing three formal “partial shift”
operators E,, E,, E, by

Elfi.j,k =-fi+ 1.k
Ezfi.j,k =f;',;'+ ks
E3fi,j,k =fi,j.k+n
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then (6) can be rewritten as
L ix(PY=(uE| + VE, + wEy) f15 1 (P). (7)
Using (7) repeatedly, we have
1 xP)=(UE, + vE, + wE})' fi ;.. (8)

Since E,, E,, E; commute, we can expand (uE, + vE, + wE,)' in (8) by the
trinomial formula and get

[ — Y t
ijuP) = = TSt t'u "WWETESES fi 4>
ie.,
lj k(P) = E Jﬁ.s.t(P)f:‘+r.j+s,k+t’ (9)
r+s+t=1

where i +j + k + [ = n. Putting / =n in (9) we obtain

S8.0.0P) =B, (/. P), (10)
(10) implies that (6) together with (5) provides a stable recursive algorithm
for evaluating the nth Bernstein polynomial over triangles.

Replacing f;;, by F;;, in both (5) and (6), we will have a recursive
algorithm for determining the point on the Bernstein triangular surface, i.e.,

F{0.0P)= [P B,(f3 P)]. (1)

We shall prove in the next section that the following three points

F1oL(P) = 1+(nn—1)u’(n—nl)v, (n—nl) . loo(P)}
Faanp)= [ D8 22y (m D, O(P)]

determine a plane which is tangential to the Bernstein surface at the point
F5.0,0(P)-
Figure 3 shows the construction for B,(f; 4,4, 1).
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N/ \/

FIGURE 3

3. THE TAYLOR EXPANSION

We mention that not only /% , o(P), but also all the other /{ ; ,(P), can be
directly related to the Bernstein polynomial B,(/; P). We have the following

LEMMA. For [=0,1,2,..,nand i +j+ k=1 we have

-0t &
n!  oufor aw

fljk(P) Bn(f;P)’

where u, v, w are treated as independent variables.
Proof. Since
!

W (uEl + UEZ + WE3)"

SCE l)' (uE, + vE, + wE,)"~'E' E, EX,
we have by (8),

! !
WBn(f;P):'W (UE, + vE; + WE3)" fo.0,0

( -l)' (UE, +vE, + WE)" ' i

n’

G
Equation (10) is a special case of (12) in which /=0. N

1,_/ k(P)

(12)
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We are now in a position to present the Taylor expansion for the Bernstein
polynomial B, (f;P). Put P=(u,v,w),P'=u',v’,w') and P' —P=
(' —u, v’ —v, w —w), then we have

THEOREM 1. For any P and P', we have the identity
" (n
BUP) =Y (1) S meae-n 03
1=0 l+1+k I

Proof. Using the Taylor expansion for polynomials of degree n in three
variables, we get

o1 d d o1
B(f;P)=Y — ' u)— f o p) — Py .
P = 3 T [ =0t =)+ 0= )| BS5P)
" I . ‘ o'B (f; P)
=y = Y " —w)(v — o)W —w)k =T
R T WIT TR A A v wr v
Lol o 9'Bu(/ P)
= — (P —P)—————
= I ,ﬂ-};k=, Jijul ) ou'ov’ow*’
and by (12) we have
n n' . )
B.(f; P)_ , N SEPY P = P).
l( ) i+j+k=1

This completes the proof of Theorem 1. 1

The Taylor expansion of functions (13) provides a powerful tool for the
investigation of the local analytical behavior of the Bernstein polynomial in

the neighborhood of P. Let us write the first three terms of the right-hand
side of (13) in more detail:

Bn(fQP’)zfgoo(P)"’n[floo(P)(u —u)

olo(P)(U — )+ fishP)w —w)]
nn—1)

+ 3 W' —u, 0" —ov,w —w|
n—2
fzoo 110 1,0,1 u'—u
n—-2 7
X fllo ozo 011 v —-v
101f011 002 w—w
+ e

(14)
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Note that the elements in the 3 X 3 matrix should be evaluated at the point
P,

The first four terms in the right-hand side of (14) form a linear function in
u',v', w', which has the contact of at least second degree with the surface at
the point Fj , o(P). Hence

z=f300(P)+n[ 100(P)(“ —u)
oto(P)(U '—U)"’foo:(P)(W - w)) (15)

is the tangent plane of the Bernstein surface at the point F{ , o(P). It is easy
to show that the plane determined by three points F7\(P),
F31l(P), F351(P) also has Eq. (15). Thus the conclusion in the end of the
previous section is justified.

If f130P), [57%(P), f55",(P) are not all equal, then without loss of
generality we can assume that f]5(P)# f§7%(P). In this case we put
w' =w and since ¥’ —u=—(v' —v),

7510(P)(“’—“)+f010(P)(U —v)+f001(P)(W —w)
= 100(P) f01o(P)](u —u),

and this will assume both positive and negative values no matter how small
lu’ — u| is. Thus we have

THEOREM 2. For fg,.(P) to be a local extreme value it is necessary
that

100P) =S 051 10(P) =S 5511(P).

This means geometrically that the tangent plane of the Bernstein surface at
the point F{, o(P) must be parallel to the plane determined by the base
triangle. To determine whether f§ o o(P) is a local extreme value or not, we
need further information coming from the third term in the right-hand side of
(14), i.e., from the following quadratic form

-2 - -2
X WARKIARY ¢
2
&m ] finh fozh foin ni, (15)
n—-2 n—2 n—2
1,0,1 0,1.1 0,0,2 4

where {+n+ (=@ +v +w)—(u+v+w)=1-1=0. This quadratic
form will be studied carefully in the next section.
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4. CONVEXITY

On p. 80, Sect. 99 of the book [3], the investigation of convexity of a
function @ with the rectangular Cartesian coordinates as its variables, is
shifted to that of nonnegativity of the quadratic form with the second order
partial derivatives of @ as its coefficients. A necessary and sufficient
condition for the convexity of @ is presented there. With obvious
modifications we can state

THEOREM 3. £ is a convex set in the plane. A necessary and sufficient
condition that B,(f; P) should be convex in 2 is that the quadratic form
(15) should be nonnegative for all P in £ and all (& n, () such that
E+n+{=0.

Setting for simplicity
fZOO(P)’ B fOZO(P)’ C fOOZ(P)’
011(P)’ b= flOl(P)9 C':fnlo(P)a

Eq. (15) becomes
A ¢ b &
en|cnells) )
baClC ¢

where &+ # + { = 0. Insertion of {=—&— n in (16) gives

A+C—-2b C+c—~a—b”fj

i-5””[c+c—a——b B+c-2a || 7 (n

where now there are no longer any restrictions on & and . Note that the
quadratic form (17) is nonnegative if and only if

A+ C2>12b, B+ C22a,

A+C—=20)B+C—2a)2(C+c—a—b). 18)
The second inequality is equivalent to
BC + CA + AB + 2(bc + ca + ab)
>a’+ b*+c? + 2(Aa + Bb + Ce). (19)

Hence Theorem 3 can be reformulated by

THEOREM 3'. A necessary and sufficient condition that B (f; P) should
be convex in £2 is that (18) and (19} hold for all P in Q.
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The following theorem provides a sufficient condition for the convexity of
B.{f3 P) in L. This condition is easier to check.

THEOREM 4. If for all P in 2 we have that

A+azb+ec, (20)
B+bzce+a, (21)
C+cza+b, (22)

then B, (f; P) is convex in Q.
Progf. It is clear that (20), (21), (22) imply

Az2b+c—a, (23)

B>c+a—b, (24)

Cza+b—c, (25)
and that

{B+C)—a, (26)

H(C+4)-b, (27)

{A4+B)—c (28)

are nonnegative numbers. Multiplying both sides of (23), (24), (25) by the
numbers in (26), (27), (28), respectively, adding, and simplifying, we get
(19). The nonnegativity of numbers in (26) and (27) implies (18). Hence
Theorem 4 comes from Theorem 3’. B

It will be desirable if we can find some conditions for convexity of
B,(f; P) in terms of f; ; ,, the values of the primitive function.

The set {f; ; ;i +/j+ k=n} is said to be convex in the u-direction if ine-
qualities

Jisvgw Hicvjriner 2 e 1a T g nen (29)

hold for all i,/, k such that i >0 and i+ j+ k=n— 1. Let us say a few
words about inequality (29). In the subdivision S,(T) there are altogether
n{n — 1)/2 parallelograms each of which has the diagonal parallel to the side
u=0 of the base triangle. A typical parallelogram with its vertices
(G + Vfn,jin kfn), @fn, G+ Dfn k), (= Dfn, G+ D/n, (k+ D),
(i/n, j/n, (k + 1)/n) and the valuations of the function f at these vertices are
shown in Fig. 4. Inequality (29) has the following interpretations: in each of
these parallelograms the sum of values of f at two vertices connected by the
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f fiet ik f

i+1,j+1 k-1 i+1,j—1,k+1

f

i—1,j+1,k+1

FIGURE 4

explicit diagonal is less than or equal to that of values of f at other two
vertices. Similar definitions may be applied to the v- direction and the w
direction by
Jigera vt 2Sienix H ikt
(j>0andi+j+k=n—-1), (30)
Jigurr Hisrjoin-1 2L iix T ijeik
(k>0and i+j+k=n—1), 31)

respectively (see Fig. 4). By the recursive algorithm (6) we have

Sl @) =ufi 5w F Ufivajur +Woiiai 1o
ik PY =i ik Wijaar

and

SlojuaP)=u ie2gk—1 Uit jrra—r Wi ke

SivtioiaP) =t aa+ i ju+ Wicijoiae
Inequalities (29) imply that for u >0, v >0, w> 0,

Siv2jo1a @Y+ LY 2 L ju AP+ u(P)

In other words, the convexity of the set {f}; ,} in the u- direction implies the
convexity of the set {f/; (P)} in the u- direction for P inside the base
triangle T. Repeating this argument we conclude that the convexity of the set
{/ijx} in the u- direction implies the convexity of {f772(P)} in the u-
direction for P€ T; or equivalently implies the inequality (20). Similar
reasoning can be applied for the convexity in the v- direction and in the w-
direction. Hence inequalities in (29), (30), (31) imply inequalities (20), (21),
(22) for P € T. Thus we have
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THEOREM 5. If {f}; .} satisfy inequalities (29), (30), (31), then B,(f; P)
is convex over the base triangle T.

COROLLARY. If the nth Bézier net f,(P) is convex in T, so is B,(f; P).

Proof. In this case we have

i jl ok i jok+1

fi,j+1,k+fi,j,k+1:f(‘n—, " ,7)+f<—"1—,—n—, "
. ij+1£) -(ijk+1>

~f"<n’n’n + n'n’ n

By the definition of f,, f, is linear along the line segment between points (i/n,
(j + 1)/n, k/n) and (i/n, j/n, (k + 1)/n), hence the value of £, at the midpoint
of the segment is half of the sum of the values of fn at two endpoints. Thus
we have

fisorn +fijue1 =2 (i ,j+511/2) k+(1/2))’

’
n

and by the convexity of f,,,

i j+(1/2) k+(1/2
e, s

p(LED ] kY a(izljtl kel

<"(n’n n) f"( n’n)

i+ _j_i) (i—1j+1k+l)

—f<n’n’n +f n’ n’ n

=fivrin T iote a1

as the point (i/n, (j + 3)/n, (k 4+ 1)/n) is the midpoint of the line segment
between points ((i + 1)/n, j/n, k/n) and ((i — 1)/n, (j + 1)/n, (k + 1)/n) too.
Hence we get

Sigork Figurt v o as 1o

for all £, j, k such that i > 0 and i +j + k = n — 1. This inequality is just (29).
Hence the convexity of f,,(P) in T implies (29), (30) and (31). By Theorem §
we conclude that B,(f; P) is convex in the base triangle T.
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5. CONDITION FOR B, (f;P)=B,, (f;P)

If £(P) is continuous in {2, then the convexity of f in £ can be defined
equivalently by (see [3])

f(f ikPk>< S AP (32)

k=1 k=1

for any P,,P,,.., P, in £ and for any nonnegative numbers 4,,41,,...,4
such that

m

Ayt + o+, =1 (33)

LEMMA. We have the identity

TisuP) = [+ DI P + U+ DI A(P)
+ K+ D7 f @), (34)

where i +j+ k=n.

This lemma can be verified by simple calculations. Equation (34) enables
us to write the nth Bernstein polynomial B, (f; P) in terms of the (n + 1)th
Bernstein basis polynomials:

i+1 i j k
B,(f;P)= Y — | JE (P
iP= N () e
SRR EA LR P
+,-+jﬁ=,,n+1f n’n n 1J+1k()
k+1 (i j &
v L1 BN G
c ! ) ke o9

Replacing (i + 1) by i, the first term of the right-hand side of (35)
becomes

(L ) e

<
i+jsk=nsr B 1 non

Even though f((i — 1)/n, j/n, k/n) makes no sense for i =0, the coefficient
i/(n + 1) standing before f will annihilate the corresponding term. Applying
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similar manipulations to the second and the third term in the right-hand side
of (35), we obtain

R e L ey

ijshensr N1 n

=1 k P k=1 .,

- s H :’P 6
() i (L ) e e)

If £(P) is convex and continuous in 7, since i+ +k=n+ 1 and

i (i—l j k)+ j (ij—l k)+ k (z’ j k-——l)
n+l \ n ’>n’n n+l1\n’ n 'n n+l\n’n’ n

i J k )
= 7
<n+l’n+l’n+1’ (37)

then by (32) we get

U o[ fi=1 j k\ (i j—1k i j k-1
n+ 1 [lf( n ’;’?)+Jf(_s?’ n ’?)+kf(-;’?’ n ”

J k )
/f(n+l n+ 17 n+1) (38)

By (36) and (38) we see that if the continuous function f(P) is convex in
T, then

B(/iP)2 B, ,(f;P) (39)

for all PE T and n=1, 2, 3,... We propose the following problem: Under
what conditions does the equality in (39) hold? From (36) and the linear
independence of J:’j «(P) we see that for any function f(P) (not necessarily

convex) B,(fi P)= B,,,(f; P) if and only if

PG ) () e (2

:f<n—il n+1’ n+l) (40)

where i+j+ k=n+ 1. If we call each point F,;, the vertex of the nth
Bézier net £,(P), we can state (40) geometrically as the following

THEOREM 6. Let f be any JSunction defined in T. Then B, (f;P)=
B, . (f: P) if and only if all vertices of f,, (P) lie on f (P).
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For a convex function f, we can reformulate Theorem 6 in a different way
which has a stronger geometric implication. We have mentioned in Section 1
that the projection of f,(P) onto the triangle T produces the subdivision of T
denoted by S,(7). Each point (i/n, j/n, k/n) with { +j+ k=n is called a
node of S, (7). S,(T) has (n-+ 1)(n+2)/2 nodes altogether. Denote the
boundary of T by &T and T°= T\¢T. The nodes in 7° are called interior
nodes while the others are called boundary nodes. Clearly §,(7) has 3n
boundary nodes and (n—2)(n~1)/2 interior nodes. There are n’
subtriangles in S,(7). Each subtriangle with vertices

(f:q.lai _k_),<_i,!.':i,£),(igi,k_l), (41)

n'n’n n’ n ' n n' n’ n

where 4, j, k> 1 and i+j+k=n-+1, is called a downward subtriangle.
S.{T) has (n — 1) n/2 downward subtriangles. All downward subtriangles of
S,(T) are colored by black in Fig. 2.

Let us observe the relationship between S (7) and S, (7). All nodes of
S,+1(T) can be put into three categories:

(1) Interior nodes are characterized by (i/(n + 1), j/(n + 1), k/(n + 1))
with , /, k> 1 and i +j+ k=n+ 1. From (37) and (41) we see that each
interior node of S, ,(T) lies inside one and only one downward triangle of
S,(T). See Fig. 5.

(2) Nodes on just one side of T are characterized by (i/(n + 1),
J/(n+ 1), k/(n + 1)) with only one of 7, /, k equal to zero. From (37) we can
say that each of these nodes of §,.,(T) lies inside one and only one
boundary segment of S (7).

(3) Three vertices of T.

FIGURE §
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If f(P) is convex in T, naturally f(P) is convex in each subtriangle with
vertices shown in (41). Hence (40) will imply f(P) is linear over this
subtriangle. Thus we have

THEOREM 7. Let function f(P) be convex and continuous in T. Let
D, be the union of all downward subtriangles of S,(T). Then
B, (/s P)=B,(f;P) if and only if

fP)=f(P) for PED,UET, (42)

otherwise we have B,(f;P)> B, . ,(f P) for PE T°,

6. CONVEXITY OVER A CHANGED TRIANGLE

Even if f(P) is defined on the base triangle T only, the Bernstein
polynomial (3) is well defined in the whole plane. In some practical
applications, we relax the restrictions (2) for more flexibility. Let
T* =AT}¥ TS TF be any triangle in the same plane of the triangie 7. We are
interested in the convexity of the Bernstein polynomial B, {f; P) restricted to
T*. Assume TF has barycentric coordinates (u;,v;, w;) with respect to T,
i=1,2,3. We define the following (n + 1)(n + 2)/2 numbers

f;ff‘k = \‘ > > Ji,s.t(ula Uy, w!)

resTi=i atBry=j A+aTu=k
X J{r,B.y(ub Uz WZ)J’i.u.v(uJ’ Uy, Wy)
Xfr+a+,1.s+a+u,:+y+w (43)
or briefly,
Shx=WE +0,Ey +w Ey) (U, E, + 0, B, + wy EyY
X (U3 By +03Ey, + w3 fo0

where i + j + k =n. We have

THEOREM 8. Let (u,v,w) be the barycentric coordinates of P with
respect to the triangle T*, then the expression

2 STl v w) (44)

i+j+k=n

represents the Bernstein polynomial B,(f; P) restricted to T*.



CONVEXITY OF BERNSTEIN POLYNOMIALS OVER TRIANGLES 27

Proof. Setting [=r+a+A, m=s+f+py p=(+y+v, we have
l+m+p=i+j+k=nand

J?,j,k(u’ v, W) J::,s,e(ui s Uy W:)Jﬁ,ﬁ,«(uzs Uy, wl)"é.a,n(“b Uy, Wy)

n! i! J! k!
TR st el Byt At uty!

W' whul v whud vl wind vt wy
n! 1" m! !
T lmipt  rlal Al SIATEl flyiy
X (et ) (v} (W)™ - (v, ) (00,)  (wos)* (uw, ) (0w,) (w3 )

n!
T Timlip!

T} an Uty vty W)
XI5 g, o(uvy, voy, wog) - J7 o (uw,, vw,, ww,).

Insertion of (43) into (44) gives

Y
h f?fj,kJ?,j,k(us v, W)

o

i+j+k=n
n! [
— {
- E [' 1 nt Z Jr.a.}.(uul!vukua}:'
l+m+p=n LRCRY ZR N Ny

"
z ‘Ihﬁ.a(uvlr Uy, WU})]
Ls+B4u=m

.
L i I y‘,,(uwla w,, WW:)] fl‘m,P
f+yro=p

n!
= Y (uu, +vu, + )
pemmpen (mipt T :
(uvy + vy + wo)"(uw, + vwy + wwy ) f;

=B, (fsuu, + vuy + wiiy, uv |+ vv, + wog, uw, + 0w, + ww,).

Note that
u, v, Ww,
o, w] {u, v, w,
Uy Uy Wy

are the baryceniric coordinates of a point inside 7% with respect to the
triangle 7.
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Now we can use the methods presented in Section 4 on f; , to check the
convexity of B,(f; P) restricted to the triangle T*.
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